				Stresse	s at Bore of	Liner(b)			
	Resi	dual Stresses	s at RT	Prestresses at Temperature			Operating Stress at Pressure and Temperature		
	σ_r/σ_1	$\sigma_{\theta}/\sigma_{1}$	s/σ_1	σ_r/σ_1	$\sigma_{\theta}/\sigma_{1}$	s/o1	σ_r/σ_1	σθΙσι	s/σ_1
RT Design	0	-1.000	-0.5000	0	-1.0000	-0.5000	-0.9727	0	0.4863
500 F Design	0	-1.1230	-0.5615	0	-1.0000	-0.5000	-0.9727	0	0.4863
1000 F Design	0	-1.2998	-0.6499	0	-1.0000	-0.5000	-0.9727	0	0.4863
		Between Cylinde l and 2		Outer Cyl		tween Cylinders			
		for	p = 300,000	psi ^(d) ,					
		·	E∆1/rlp		ΕΔ	n/r_np			
RT Design			0.358		(0.343			
500 F Design			0.454		(0.343			
-			0.533			0.343			

TABLE XLVII. LINER-BORE STRESSES AND INTERFERENCES FOR A 6-INCH-BORE MULTIRING CONTAINER WITH K = 8.5, N = 5, $k_1 = 2.0$, $k_n = 1.44$, n = 2, $\alpha_r = 0.5$, AND $\alpha_m = -0.5(a)$

(a) The k_n, K, a_r, and a_m are defined in the list of symbols. Material data are given in Table XLVI. The liner is 18% Ni steel and the outer cylinders are H-11 steel.1

(b) σ_r is the radial stress, σ_{θ} the hoop stress, S the shear stress (S = $(\sigma_{\theta} - \sigma_r)/2$), and σ_1 is the design strength - less than or equal to the ultimate tensile strength of the liner.

(c) E is the modulus of elasticity of the outer cylinders. Δ_n is interference in inches between cylinders n and n + 1. r_n is the outer radius of cylinder n.

(d) $E\Delta_1/r_1p$, at elevated temperatures, depends on p. $\sigma_1 = 310,000$ psi is required, (p = 0.9727 σ_1).

213

				Stresse	s at Bore of	Liner(b)			
	Resi	dual Stresses	at RT	Prestresses at Temperature			Operating Stress at Pressure and Temperature		
	σ_r/σ_1	σθ/σ1	s/o1	σ_r/σ_1	σθ/σι	s/o1	σ_r/σ_1	$\sigma_{\theta}/\sigma_{1}$	s/σ_1
RT Design	0	-0.8000	-0.4000	0	-0.8000	-0.4000	-0.9727	0.2000	0.5863
00 F Design	0	-0.9054	-0.4527	0	-0.8000	-0.4000	-0.9727	0.2000	0.5863
000 F Design	0	-1.0505	-0.5253	0	-0.8000	-0.4000	-0.9727	0.2000	0.5863
		Dimensi	ionless Interf	ference Re	quired as Ma	anufactured(c)		
			N. S. C. C. C. S. S. S. S.	Long and		da sou	<u>)</u>		
		В	etween Cylind 1 and 2	ders	Be Outer	tween Cylinders	<u>)</u>		
		В	etween Cylind	ders	Be Outer n an	tween) 		
		В	etween Cylind 1 and 2 p = 300,000 p	ders	Be Outer n an E∆	tween Cylinders 1d n + 1			
RT Design 500 F Design		В	etween Cylind 1 and 2 p = 300,000 p $E\Delta_1/r_1 p$	ders	Be Outer n an EA 0	tween Cylinders ad $n + 1$ $n/r_n p$	- - 01 43.21 - 41 43.2		

TABLE XLVIII. LINER-BORE STRESSES AND INTERFERENCES FOR A 6-INCH-BORE MULTIRING CONTAINER WITH K = 8.5, N = 5, $k_1 = 2.0$, $k_n = 1.44$, $n \stackrel{>}{=} 2$, $\alpha_r = 0.5$, AND $\alpha_m = -0.3^{(a)}$

(a) The k_n, K, a_r, and a_m are defined in the list of symbols. Material data are given in Table XLVI. The liner is 18% Ni steel and the outer cylinders are H-11 steel.

(b) σ_r is the radial stress, σ_{θ} the hoop stress, S the shear stress (S = $(\sigma_{\theta} - \sigma_r)/2$), and σ_1 is the design strength - less than or equal to the ultimate tensile strength of the liner.

(c) E is the modulus of elasticity of the outer cylinder. Δ_n is interference in inches between cylinders n and n + 1. r_n is the outer radius of cylinder n.

(d) $E\Delta_1/r_{1p}$, at elevated temperatures, depends on p. $\sigma_1 = 310,000$ psi is required (p = 0.9727 σ_1).

214